Generate-Summary-Statistics
Source:vignettes/Generate-Summary-Statistics.Rmd
Generate-Summary-Statistics.RmdUpdate ADSL and ADVS
repfun:::rfenv$G_POPDATA %>% dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) -> G_POPDATA
attr(G_POPDATA$TRT01AN,"label") <- 'Actual Treatment for Period 01 (n)'
repfun:::rfenv$adamdata$advs.rda() %>% dplyr::filter(ANL01FL=='Y') %>%
dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) %>%
dplyr::filter(!is.na(AVISITN) & (DTYPE=='AVERAGE')) -> advs2
attr(advs2$TRT01AN,"label") <- 'Actual Treatment for Period 01 (n)'Generate Summary Statistics for Baseline Characteristics
repfun::ru_sumstats(G_POPDATA,
analysisvars=c("AGE","TRTDURD"),
groupbyvars=c("STUDYID","TRT01AN"),
codedecodevarpairs=c("TRT01AN", "TRT01A"),
totalforvar="TRT01AN", totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=list("AGE"=1,"TRTDURD"=2),
statslist=c("n", "mean", "median", "sd", "min", "max")) %>%
dplyr::arrange(tt_avid, TRT01AN,tt_svid) %>% dplyr::select(-tt_result_num) -> basecharsDisplay the Results for Baseline Characteristics
lbls <- sapply(basechars,function(x){attr(x,"label")})
knitr::kable(head(basechars,10), col.names=paste(names(lbls),lbls,sep=" "),
caption = "Summary Statistics for Baseline Characteristics")| STUDYID Study Identifier | TRT01AN Actual Treatment for Period 01 (n) | TRT01A Actual Treatment for Period 01 | tt_result Result | tt_svid Statistical Parameter ID | tt_svnm Statistical Parameter Name | tt_avid Analysis Variable ID | tt_avnm Analysis Variable Name |
|---|---|---|---|---|---|---|---|
| CDISCPILOT01 | 1 | Placebo | 86 | 1 | n | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 75.21 | 2 | Mean | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 76.00 | 3 | Median | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 8.590 | 4 | SD | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 52.0 | 5 | Min | 1 | AGE |
| CDISCPILOT01 | 1 | Placebo | 89.0 | 6 | Max | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 96 | 1 | n | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 75.96 | 2 | Mean | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 78.00 | 3 | Median | 1 | AGE |
| CDISCPILOT01 | 2 | Xanomeline Low Dose | 8.114 | 4 | SD | 1 | AGE |
Generate Summary Statistics for Vital Signs with Constant Precision
repfun::ru_sumstats(advs2,
analysisvars=c("AVAL"),
groupbyvars=c("STUDYID","TRT01AN","PARAMCD","AVISITN"),
codedecodevarpairs=c("TRT01AN","TRT01A","PARAMCD","PARAM","AVISITN","AVISIT"),
totalforvar="TRT01AN",
totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=1,
statslist=c("n","mean","median","sd","min","max")) %>%
dplyr::arrange(TRT01AN,PARAMCD,AVISITN, tt_svid) %>%
dplyr::select(-c('tt_avnm','tt_avid','tt_result_num')) -> vtlsignsDisplay the Results for Vital Signs with Constant Precision
lbls <- sapply(vtlsigns,function(x){attr(x,"label")})
knitr::kable(head(vtlsigns,10), col.names=paste(names(lbls),lbls,sep=" "),
caption = "Summary Statistics for Vital Signs with Constant Precision")| STUDYID Study Identifier | TRT01AN Actual Treatment for Period 01 (n) | TRT01A Actual Treatment for Period 01 | PARAMCD Parameter Code | PARAM Parameter | AVISITN Analysis Visit (N) | AVISIT Analysis Visit | tt_result Result | tt_svid Statistical Parameter ID | tt_svnm Statistical Parameter Name |
|---|---|---|---|---|---|---|---|---|---|
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 63 | 1 | n |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 23.29 | 2 | Mean |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 23.04 | 3 | Median |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 3.595 | 4 | SD |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 15.3 | 5 | Min |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 2 | Week 2 | 33.6 | 6 | Max |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 59 | 1 | n |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 23.17 | 2 | Mean |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 23.01 | 3 | Median |
| CDISCPILOT01 | 1 | Placebo | BMI | Body Mass Index(kg/m^2) | 4 | Week 4 | 3.401 | 4 | SD |
Generate Summary Statistics for Vital Signs with Varying Precision
decodes <- advs2 %>% distinct(PARAMCD, PARAM)
dcodelst <- split(decodes$PARAM, decodes$PARAMCD)
advs2 %>% dplyr::select(STUDYID,USUBJID,TRT01AN,TRT01A,PARAMCD,AVISITN,AVISIT,AVAL) %>%
dplyr::arrange(USUBJID,TRT01AN,TRT01A,AVISITN,AVISIT) %>%
dplyr::group_by(USUBJID,TRT01AN,TRT01A,AVISITN,AVISIT) %>%
tidyr::pivot_wider(names_from=PARAMCD, values_from=AVAL) -> advs2_t
advs2_t <- repfun::ru_labels(advs2_t,varlabels=dcodelst)
repfun::ru_sumstats(advs2_t,
analysisvars=c("BMI","BSA","DIABP","MAP","PULSE","SYSBP","TEMP","WEIGHT"),
groupbyvars=c("STUDYID","TRT01AN","AVISITN"),
codedecodevarpairs=c("TRT01AN","TRT01A","AVISITN","AVISIT"),
totalforvar="TRT01AN", totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=list("BMI"=1,"BSA"=2,"DIABP"=3,"MAP"=4,"PULSE"=1,"SYSBP"=2,
"TEMP"=3,"WEIGHT"=4),
statslist=c("n","mean","median","sd","min","max")) %>%
dplyr::left_join(decodes %>% dplyr::mutate(tt_avnm=PARAMCD),by='tt_avnm') %>%
dplyr::arrange(tt_avid, TRT01AN, AVISITN, tt_svid) %>%
dplyr::select(-c('tt_result_num','tt_avnm')) %>%
dplyr::arrange(PARAMCD,TRT01AN,AVISITN) -> vtlsigns_tDisplay the Results for Vital Signs with Constant Precision
lbls <- sapply(vtlsigns_t,function(x){attr(x,"label")})
knitr::kable(head(vtlsigns_t,10), col.names=paste(names(lbls),lbls,sep=" "),
caption = "Summary Statistics for Vital Signs with Varying Precision")| STUDYID Study Identifier | TRT01AN Actual Treatment for Period 01 (n) | TRT01A Actual Treatment for Period 01 | AVISITN Analysis Visit (N) | AVISIT Analysis Visit | tt_result Result | tt_svid Statistical Parameter ID | tt_svnm Statistical Parameter Name | tt_avid Analysis Variable ID | PARAMCD Parameter Code | PARAM Parameter |
|---|---|---|---|---|---|---|---|---|---|---|
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 63 | 1 | n | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 23.29 | 2 | Mean | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 23.04 | 3 | Median | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 3.595 | 4 | SD | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 15.3 | 5 | Min | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 2 | Week 2 | 33.6 | 6 | Max | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 59 | 1 | n | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 23.17 | 2 | Mean | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 23.01 | 3 | Median | 1 | BMI | Body Mass Index(kg/m^2) |
| CDISCPILOT01 | 1 | Placebo | 4 | Week 4 | 3.401 | 4 | SD | 1 | BMI | Body Mass Index(kg/m^2) |