Set Up the Reporting Environment
tmpdr <- tempdir()
datdir <- file.path(gsub("\\","/",tmpdr,fixed=TRUE),"datdir")
dir.create(datdir,showWarnings=FALSE)
repfun::copydata(datdir)
repfun::rs_setup(D_POP="SAFFL",D_POPLBL="Safety",
D_POPDATA=repfun::adsl %>% dplyr::filter(SAFFL =='Y'),
D_SUBJID=c("STUDYID","USUBJID"), R_ADAMDATA=datdir)
repfun:::rfenv$G_POPDATA %>% dplyr::mutate(TRT01AN=ifelse(TRT01A=='Placebo',1,ifelse(TRT01A=='Xanomeline Low Dose',2,3))) %>% repfun::ru_labels(varlabels=list('TRT01AN'='Actual Treatment for Period 01 (n)')) -> G_POPDATAGenerate Counts and Percents for AE Body System and Preferred Term
aesum <- repfun::ru_freq(adae,
dsetindenom=G_POPDATA,
countdistinctvars=c('STUDYID','USUBJID'),
groupbyvarsnumer=c('TRT01AN','TRT01A','AEBODSYS','AEDECOD'),
anyeventvars = c('AEBODSYS','AEDECOD'),
anyeventvalues = c('ANY EVENT','ANY EVENT'),
groupbyvarsdenom=c('TRT01AN'),
resultstyle="NUMERPCT",
totalforvar=c('TRT01AN'),
totalid=99,
totaldecode='Total',
codedecodevarpairs=c("TRT01AN", "TRT01A"),
varcodelistpairs=c(""),
codelistnames=list(),
resultpctdps=0)Display the Denormalized AE Counts and Percents Data Set
lbls <- sapply(aesum_t,function(x){attr(x,"label")})
knitr::kable(head(aesum_t,10), col.names=paste(names(lbls),lbls,sep=": "),
caption = "Denormalized Data Set for Counts and Percents") %>%
kable_styling(full_width = T) %>% column_spec(c(2,3), width_min = c('2in','2in'))| tt_summarylevel: Summary Level | AEBODSYS: Body System or Organ Class | AEDECOD: Dictionary-Derived Term | tt_ac01: Placebo | tt_p01: Placebo | tt_ac02: Xanomeline Low Dose | tt_p02: Xanomeline Low Dose | tt_ac03: Xanomeline High Dose | tt_p03: Xanomeline High Dose | tt_ac99: Total | tt_p99: Total |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | ANY EVENT | ANY EVENT | 69 (80%) | 80.232558 | 86 (90%) | 89.583333 | 70 (97%) | 97.222222 | 225 (89%) | 88.5826772 |
| 1 | CARDIAC DISORDERS | ANY EVENT | 13 (15%) | 15.116279 | 16 (17%) | 16.666667 | 15 (21%) | 20.833333 | 44 (17%) | 17.3228346 |
| 1 | CONGENITAL, FAMILIAL AND GENETIC DISORDERS | ANY EVENT | 0 (0%) | 0.000000 | 1 (1%) | 1.041667 | 2 (3%) | 2.777778 | 3 (1%) | 1.1811024 |
| 1 | EAR AND LABYRINTH DISORDERS | ANY EVENT | 1 (1%) | 1.162791 | 2 (2%) | 2.083333 | 1 (1%) | 1.388889 | 4 (2%) | 1.5748031 |
| 1 | EYE DISORDERS | ANY EVENT | 4 (5%) | 4.651163 | 2 (2%) | 2.083333 | 1 (1%) | 1.388889 | 7 (3%) | 2.7559055 |
| 1 | GASTROINTESTINAL DISORDERS | ANY EVENT | 17 (20%) | 19.767442 | 16 (17%) | 16.666667 | 20 (28%) | 27.777778 | 53 (21%) | 20.8661417 |
| 1 | GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ANY EVENT | 21 (24%) | 24.418605 | 51 (53%) | 53.125000 | 36 (50%) | 50.000000 | 108 (43%) | 42.5196850 |
| 1 | HEPATOBILIARY DISORDERS | ANY EVENT | 1 (1%) | 1.162791 | 0 (0%) | 0.000000 | 0 (0%) | 0.000000 | 1 (0%) | 0.3937008 |
| 1 | IMMUNE SYSTEM DISORDERS | ANY EVENT | 0 (0%) | 0.000000 | 1 (1%) | 1.041667 | 1 (1%) | 1.388889 | 2 (1%) | 0.7874016 |
| 1 | INFECTIONS AND INFESTATIONS | ANY EVENT | 16 (19%) | 18.604651 | 10 (10%) | 10.416667 | 13 (18%) | 18.055556 | 39 (15%) | 15.3543307 |
Derive Summary Statistics for Baseline Characteristics Data
demstats <- repfun::ru_sumstats(G_POPDATA,
analysisvars=c("AGE","TRTDURD"),
groupbyvars=c("STUDYID","TRT01AN"),
codedecodevarpairs=c("TRT01AN", "TRT01A"),
totalforvar="TRT01AN", totalid=99,
totaldecode="Total",
statsinrowsyn = "Y",
analysisvardps=list("AGE"=1,"TRTDURD"=2),
statslist=c("n", "mean", "median", "sd", "min", "max"))Display the Denormalized Baseline Characteristics Summary Statistics Data Set
lbls <- sapply(demprod_t,function(x){attr(x,"label")})
knitr::kable(head(demprod_t,10), col.names=paste(names(lbls),lbls,sep=": "),
caption = "Denormalized Data Set for Baseline Characteristics Summary Statistics") %>%
kable_styling(full_width = T) %>% column_spec(c(2), width_min = c('3in'))| tt_avid: Analysis Variable ID | tt_avnm: Analysis Variable Name | tt_svid: Statistical Parameter ID | tt_svnm: Statistical Parameter Name | tt_ac01: Placebo | tt_ac02: Xanomeline Low Dose | tt_ac03: Xanomeline High Dose | tt_ac99: Total |
|---|---|---|---|---|---|---|---|
| 1 | AGE | 1 | n | 86 | 96 | 72 | 254 |
| 1 | AGE | 2 | Mean | 75.21 | 75.96 | 73.78 | 75.09 |
| 1 | AGE | 3 | Median | 76.00 | 78.00 | 75.50 | 77.00 |
| 1 | AGE | 4 | SD | 8.590 | 8.114 | 7.944 | 8.246 |
| 1 | AGE | 5 | Min | 52.0 | 51.0 | 56.0 | 51.0 |
| 1 | AGE | 6 | Max | 89.0 | 88.0 | 88.0 | 89.0 |
| 2 | TRTDURD | 1 | n | 85 | 95 | 72 | 252 |
| 2 | TRTDURD | 2 | Mean | 149.541 | 86.811 | 112.222 | 115.230 |
| 2 | TRTDURD | 3 | Median | 182.000 | 63.000 | 96.500 | 132.000 |
| 2 | TRTDURD | 4 | SD | 60.3544 | 70.4737 | 65.5233 | 70.7137 |