Calculates the Jeffreys interval, an equal-tailed interval based on the
non-informative Jeffreys prior for a binomial proportion.
Usage
ci_prop_jeffreys(x, conf.level = 0.95, data = NULL)
Arguments
- x
(binary
/numeric
/logical
)
vector of a binary values, i.e. a logical vector, or numeric with values c(0, 1)
- conf.level
(scalar numeric
)
a scalar in (0,1) indicating the confidence level. Default is 0.95
- data
(data.frame
)
Optional data frame containing the variables specified in x
and by
.
Details
$$\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha,
\text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)$$