Skip to contents

Calculates the Jeffreys interval, an equal-tailed interval based on the non-informative Jeffreys prior for a binomial proportion.

Usage

ci_prop_jeffreys(x, conf.level = 0.95, data = NULL)

Arguments

x

(binary/numeric/logical)
vector of a binary values, i.e. a logical vector, or numeric with values c(0, 1)

conf.level

(scalar numeric)
a scalar in (0,1) indicating the confidence level. Default is 0.95

data

(data.frame)
Optional data frame containing the variables specified in x and by.

Details

$$\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha, \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)$$