Skip to contents

Calculates the Wald interval by following the usual textbook definition for a single proportion confidence interval using the normal approximation.

Usage

ci_prop_wald(x, conf.level = 0.95, correct = FALSE, data = NULL)

Arguments

x

(binary/numeric/logical)
vector of a binary values, i.e. a logical vector, or numeric with values c(0, 1)

conf.level

(scalar numeric)
a scalar in (0,1) indicating the confidence level. Default is 0.95

correct

(logical)
apply continuity correction.

data

(data.frame)
Optional data frame containing the variables specified in x and by.

Value

An object containing the following components:

n

Number of responses

N

Total number

estimate

The point estimate of the proportion

conf.low

Lower bound of the confidence interval

conf.high

Upper bound of the confidence interval

conf.level

The confidence level used

method

Type of method used

Details

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}$$

Examples

# example code
x <- c(
TRUE, TRUE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE
)

ci_prop_wald(x, conf.level = 0.9)
#> 
#> ── Wald Confidence Interval without Continuity Correction ──────────────────────
#> • 5 responses out of 10
#> • Estimate: 0.5
#> • 90% Confidence Interval:
#>   (0.2399, 0.7601)