Skip to contents

Calculates the Jeffreys interval, an equal-tailed interval based on the non-informative Jeffreys prior for a binomial proportion.

Usage

ci_prop_jeffreys(x, conf.level = 0.95, data = NULL)

Arguments

x

(binary/numeric/logical)
vector of a binary values, i.e. a logical vector, or numeric with values c(0, 1)

conf.level

(scalar numeric)
a scalar in (0,1) indicating the confidence level. Default is 0.95

data

(data.frame)
Optional data frame containing the variables specified in x and by.

Value

An object containing the following components:

n

Number of responses

N

Total number

estimate

The point estimate of the proportion

conf.low

Lower bound of the confidence interval

conf.high

Upper bound of the confidence interval

conf.level

The confidence level used

method

Type of method used

Details

$$\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha, \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)$$