Stratified Newcombe Common Risk Difference Confidence Interval
ci_prop_diff_nc_strata.RdCalculates the stratified Newcombe confidence interval for unequal proportions as described in Yan X, Su XG. Stratified Wilson and Newcombe confidence intervals or multiple binomial proportions. Weights are estimated using CMH or Wilson methods.
Usage
ci_prop_diff_nc_strata(
x,
by,
strata,
conf.level = 0.95,
correct = FALSE,
weights_method = c("wilson", "cmh"),
data = NULL
)Arguments
- x
(
binary/numeric/logical)
vector of a binary values, i.e. a logical vector, or numeric with valuesc(0, 1)- by
(
string)
A character or factor vector with exactly two unique levels identifying the two groups to compare. Can also be a column name if a data frame provided in thedataargument.- strata
(
numeric)
A vector specifying the stratum for each observation. It needs to be the length of x or a multiple of x if multiple levels of strata are present. Can also be a column name (or vector of column names NOT quoted) if a data frame provided in thedataargument.- conf.level
(
scalar numeric)
a scalar in (0,1) indicating the confidence level. Default is 0.95- correct
(scalar
logical)
include the continuity correction. For further information, see for example [ci_prop_diff_nc())].[ci_prop_diff_nc())]: R:ci_prop_diff_nc())
- weights_method
(
character)
Can be either "wilson" or "cmh" and directs the way weights are estimated.- data
(
data.frame)
Optional data frame containing the variables specified inxandby.
Value
An object containing the following components:
- n
Number of responses
- N
Total number
- estimate
The point estimate of the proportion
- conf.low
Lower bound of the confidence interval
- conf.high
Upper bound of the confidence interval
- conf.level
The confidence level used
- weights
Weights of each strata calculated as per the specified "weights_method" argument.
- method
Type of method used
Details
$$ L = \hat{d}_{\rm MH} - z_{\alpha/2} \sqrt{ \sum_h w_h^2 L_{2h} (1 - L_{2h}) + \sum_h w_h^2 U_{1h} (1 - U_{1h}) } $$
$$ U = \hat{d}_{\rm MH} + z_{\alpha/2} \sqrt{ \sum_h w_h^2 L_{2h} (1 - L_{2h}) + \sum_h w_h^2 U_{1h} (1 - U_{1h}) } $$
Where:
\(\hat{d}_{\rm MH}\): Mantel-Haenszel common risk difference
\(z_{\alpha/2}\): standard normal critical value
\(w_h\): stratum weights
\(L_{2h}\), \(U_{1h}\): Wilson-type CI limits for stratum h
Examples
set.seed(1)
rsp <- sample(c(TRUE, FALSE), 100, TRUE)
grp <- sample(c("Placebo", "Treatment"), 100, TRUE)
strata_data <- data.frame(
"f1" = sample(c("a", "b"), 100, TRUE),
"f2" = sample(c("x", "y", "z"), 100, TRUE),
stringsAsFactors = TRUE
)
strata <- interaction(strata_data)
ci_prop_diff_nc_strata(
x = rsp, by = grp, strata = strata, weights_method = "cmh",
conf.level = 0.95
)
#>
#> ── Stratified Newcombe Confidence Interval without continuity correction, CMH ──
#> • 49 responses out of 100
#> • Weights: a.x = 0.122, b.x = 0.273, a.y = 0.132, b.y = 0.14, a.z = 0.193, b.z
#> = 0.14
#> • Estimate: 0.042
#> • 95% Confidence Interval:
#> (-0.1508, 0.2314)